Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Surface studies of crystalline and amorphous Zn-In-Sn-O transparent conducting oxides

Identifieur interne : 001454 ( Main/Repository ); précédent : 001453; suivant : 001455

Surface studies of crystalline and amorphous Zn-In-Sn-O transparent conducting oxides

Auteurs : RBID : Pascal:12-0296700

Descripteurs français

English descriptors

Abstract

X-ray and ultraviolet photoelectron spectroscopy (UPS) studies were made of in situ RF magnetron-sputtered crystalline (c) and amorphous (a) Zn-In-Sn-O (ZITO) thin films, ex situ pulsed laser deposited c- and a-ZITO thin films, and bulk ZITO ceramics. Cosubstitution of Zn and Sn for In results in an increase of the In core level binding energy at a given Fermi level compared to that measured in undoped and Sn-doped In2O3 (ITO). In plots of work function vs. Fermi level, in situ c-ZITO and a-ZITO films have low ionization potentials (7.0-7.7 eV) that are similar to undoped In2O3. In contrast, dry-air-annealed in situ films, ex situ films, and bulk ceramics have higher ionization potentials (7.7-8.1 eV) that are more similar to ITO and match well with previous work on air-exposed surfaces. Kelvin Probe measurements were made of select a-ZITO films exposed to air and ultraviolet/ozone-treated so as to measure work functions under conditions commonly employed for device fabrication. Results (4.8-5.3 eV) were in good agreement with the UPS work functions of oxygen-exposed materials and with literature values. Lastly, a parallelogram plot of work function vs. Fermi level shows that a wider range of work functions is achievable in ZITO materials as compared to other transparent conducting oxides (Sb-doped SnO2, Al-doped ZnO, Sn-doped In2O3), making ZITO more versatile for applications.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0296700

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Surface studies of crystalline and amorphous Zn-In-Sn-O transparent conducting oxides</title>
<author>
<name sortKey="Proffit, Diana E" uniqKey="Proffit D">Diana E. Proffit</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Northwestern University, Dept. of Materials Science and Engineering, 2220 Campus Drive</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Evanston, IL 60208</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Harvey, Steven P" uniqKey="Harvey S">Steven P. Harvey</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Northwestern University, Dept. of Materials Science and Engineering, 2220 Campus Drive</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Evanston, IL 60208</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Klein, Andreas" uniqKey="Klein A">Andreas Klein</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Darmstadt University of Technology, Institute of Materials Science, Petersenstrasse 23</s1>
<s2>64287 Darmstadt</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Darmstadt</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schafranek, Robert" uniqKey="Schafranek R">Robert Schafranek</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Darmstadt University of Technology, Institute of Materials Science, Petersenstrasse 23</s1>
<s2>64287 Darmstadt</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Darmstadt</region>
<settlement type="city">Darmstadt</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Emery, Jonathan D" uniqKey="Emery J">Jonathan D. Emery</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Northwestern University, Dept. of Materials Science and Engineering, 2220 Campus Drive</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Evanston, IL 60208</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bruce Buchholz, D" uniqKey="Bruce Buchholz D">D. Bruce Buchholz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Northwestern University, Dept. of Materials Science and Engineering, 2220 Campus Drive</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Evanston, IL 60208</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chang, Robert P H" uniqKey="Chang R">Robert P. H. Chang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Northwestern University, Dept. of Materials Science and Engineering, 2220 Campus Drive</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Evanston, IL 60208</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bedzyk, Michael J" uniqKey="Bedzyk M">Michael J. Bedzyk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Northwestern University, Dept. of Materials Science and Engineering, 2220 Campus Drive</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Evanston, IL 60208</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mason, Thomas O" uniqKey="Mason T">Thomas O. Mason</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Northwestern University, Dept. of Materials Science and Engineering, 2220 Campus Drive</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Evanston, IL 60208</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0296700</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0296700 INIST</idno>
<idno type="RBID">Pascal:12-0296700</idno>
<idno type="wicri:Area/Main/Corpus">001B27</idno>
<idno type="wicri:Area/Main/Repository">001454</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium additions</term>
<term>Antimony additions</term>
<term>Binding energy</term>
<term>Core levels</term>
<term>Electronic structure</term>
<term>Energy levels</term>
<term>Fermi level</term>
<term>Indium oxide</term>
<term>Ionization potential</term>
<term>Kelvin probe</term>
<term>Physical vapor deposition</term>
<term>Pulsed laser deposition</term>
<term>Thin films</term>
<term>Tin additions</term>
<term>Tin oxide</term>
<term>Ultraviolet photoelectron spectra</term>
<term>Work functions</term>
<term>X-ray photoelectron spectra</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Spectre photoélectron UV</term>
<term>Dépôt physique phase vapeur</term>
<term>Couche mince</term>
<term>Dépôt laser pulsé</term>
<term>Niveau coeur</term>
<term>Niveau énergie</term>
<term>Energie liaison</term>
<term>Niveau Fermi</term>
<term>Structure électronique</term>
<term>Addition étain</term>
<term>Travail sortie</term>
<term>Potentiel ionisation</term>
<term>Sonde Kelvin</term>
<term>Addition antimoine</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Oxyde de zinc</term>
<term>Addition aluminium</term>
<term>Spectre photoélectron RX</term>
<term>In2O3</term>
<term>SnO2</term>
<term>ZnO</term>
<term>8115C</term>
<term>8115F</term>
<term>7320</term>
<term>7320A</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">X-ray and ultraviolet photoelectron spectroscopy (UPS) studies were made of in situ RF magnetron-sputtered crystalline (c) and amorphous (a) Zn-In-Sn-O (ZITO) thin films, ex situ pulsed laser deposited c- and a-ZITO thin films, and bulk ZITO ceramics. Cosubstitution of Zn and Sn for In results in an increase of the In core level binding energy at a given Fermi level compared to that measured in undoped and Sn-doped In
<sub>2</sub>
O
<sub>3</sub>
(ITO). In plots of work function vs. Fermi level, in situ c-ZITO and a-ZITO films have low ionization potentials (7.0-7.7 eV) that are similar to undoped In
<sub>2</sub>
O
<sub>3</sub>
. In contrast, dry-air-annealed in situ films, ex situ films, and bulk ceramics have higher ionization potentials (7.7-8.1 eV) that are more similar to ITO and match well with previous work on air-exposed surfaces. Kelvin Probe measurements were made of select a-ZITO films exposed to air and ultraviolet/ozone-treated so as to measure work functions under conditions commonly employed for device fabrication. Results (4.8-5.3 eV) were in good agreement with the UPS work functions of oxygen-exposed materials and with literature values. Lastly, a parallelogram plot of work function vs. Fermi level shows that a wider range of work functions is achievable in ZITO materials as compared to other transparent conducting oxides (Sb-doped SnO
<sub>2</sub>
, Al-doped ZnO, Sn-doped In
<sub>2</sub>
O
<sub>3</sub>
), making ZITO more versatile for applications.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>520</s2>
</fA05>
<fA06>
<s2>17</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Surface studies of crystalline and amorphous Zn-In-Sn-O transparent conducting oxides</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PROFFIT (Diana E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HARVEY (Steven P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KLEIN (Andreas)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SCHAFRANEK (Robert)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>EMERY (Jonathan D.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BRUCE BUCHHOLZ (D.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>CHANG (Robert P. H.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BEDZYK (Michael J.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>MASON (Thomas O.)</s1>
</fA11>
<fA14 i1="01">
<s1>Northwestern University, Dept. of Materials Science and Engineering, 2220 Campus Drive</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Darmstadt University of Technology, Institute of Materials Science, Petersenstrasse 23</s1>
<s2>64287 Darmstadt</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>5633-5639</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000500808460250</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>35 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0296700</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>X-ray and ultraviolet photoelectron spectroscopy (UPS) studies were made of in situ RF magnetron-sputtered crystalline (c) and amorphous (a) Zn-In-Sn-O (ZITO) thin films, ex situ pulsed laser deposited c- and a-ZITO thin films, and bulk ZITO ceramics. Cosubstitution of Zn and Sn for In results in an increase of the In core level binding energy at a given Fermi level compared to that measured in undoped and Sn-doped In
<sub>2</sub>
O
<sub>3</sub>
(ITO). In plots of work function vs. Fermi level, in situ c-ZITO and a-ZITO films have low ionization potentials (7.0-7.7 eV) that are similar to undoped In
<sub>2</sub>
O
<sub>3</sub>
. In contrast, dry-air-annealed in situ films, ex situ films, and bulk ceramics have higher ionization potentials (7.7-8.1 eV) that are more similar to ITO and match well with previous work on air-exposed surfaces. Kelvin Probe measurements were made of select a-ZITO films exposed to air and ultraviolet/ozone-treated so as to measure work functions under conditions commonly employed for device fabrication. Results (4.8-5.3 eV) were in good agreement with the UPS work functions of oxygen-exposed materials and with literature values. Lastly, a parallelogram plot of work function vs. Fermi level shows that a wider range of work functions is achievable in ZITO materials as compared to other transparent conducting oxides (Sb-doped SnO
<sub>2</sub>
, Al-doped ZnO, Sn-doped In
<sub>2</sub>
O
<sub>3</sub>
), making ZITO more versatile for applications.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15F</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C20A</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C30</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Spectre photoélectron UV</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Ultraviolet photoelectron spectra</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Dépôt physique phase vapeur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Physical vapor deposition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Dépôt laser pulsé</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Pulsed laser deposition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Niveau coeur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Core levels</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Niveau énergie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Energy levels</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Energie liaison</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Binding energy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Niveau Fermi</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Fermi level</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Addition étain</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Tin additions</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Travail sortie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Work functions</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Potentiel ionisation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Ionization potential</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Sonde Kelvin</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Kelvin probe</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Sonda Kelvin</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Addition antimoine</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Antimony additions</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Addition aluminium</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Aluminium additions</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Spectre photoélectron RX</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>X-ray photoelectron spectra</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>SnO2</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8115F</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>7320</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>7320A</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>226</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001454 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001454 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0296700
   |texte=   Surface studies of crystalline and amorphous Zn-In-Sn-O transparent conducting oxides
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024